The Potomac River Floodplain
This post is going to talk about fluvial processes during the last few millennia, with the Potomac River as an example. A previous post discussed the geology of the Potomac’s fall line, where it drops out of the foothills of the ancestral Appalachian Mountains to the coastal plain before entering Chesapeake Bay. I’m going to keep this simple because, to be honest, fluvial geomorphology is not a straightforward topic. Rivers are constantly changing at time scales from years to millions of years. We won’t be walking back billions of years today, only a few hundred thousand, maybe a couple of million.

The lower Potomac River is braided, with multiple channels defining wooded islands (e.g. Van Deventer Island in Fig. 1). I won’t be talking about them but instead focus on what I saw, what the rocks (river sediment is unlithified rock to a geologist) tell me. The river flood plain extends to the Pleistocene terrace (yellow line in Fig. 1), which is about 80 feet higher in elevation than the river surface. No permanent structures have been constructed on the flood plain.
Some of the features we will examine are shown schematically in Figure 2. Note however, that the image shows a meandering stream whereas the Potomac is braided, which means that its channel doesn’t take those big loops shown in Fig. 2. That’s because the lower Potomac drops rapidly from Great Falls just upstream of the study area, to Washington D.C. in this area.

We started out on the area labeled “Bluffs” in Fig. 2 and traversed the flood plain, following a tributary called Horsepen Run (see Fig. 1 for location). Note that Horsepen Run is a meandering stream, so we’ll see several features that scale downward from Fig. 2 as we cross the Potomac flood plain.

Horsepen Run (aka creek) drops quickly from the Pleistocene terrace (Fig. 1) but then crosses the Potomac flood plain and begins to meander. The photo in Fig. 3 is from a location just before this change in stream topography occurred.

The changes in stream morphology seen between Figs. 3 and 4 occur in larger streams (like the Potomac) but on much longer spatial scales.



Figure 1 indicates the presence of natural levees (lower center of Fig. 1) near the main river channel. There is no “Yazoo Tributary” (see Fig. 2) at this location, so Horsepen Run cut across the Potomac’s natural levee. This can be seen beautifully in Fig. 8.


It was a beautiful February day to hike to across the Potomac River flood plain. I hadn’t expected to find so much dynamic geology so close to my new home, but there it was. The historic Potomac River transitions from its rocky confluence with the Shenandoah River at Harper’s Ferry, to the tidal river that defines Washington D.C., right here and, like America, it is not in equilibrium. The cut banks of the Potomac and its tributary, Horsepen Run, portend of rapid changes in the relative elevation of the land and the sea.
We are in for a wild ride…
Trackbacks / Pingbacks